Respuesta :
[tex]\mathbf f(x,y,z)=x^4\,\mathbf i-x^3z^2\,\mathbf j+4xy^2z\,\mathbf k[/tex]
[tex]\mathrm{div}(\mathbf f)=\dfrac{\partial(x^4)}{\partial x}+\dfrac{\partial(-x^3z^2)}{\partial y}+\dfrac{\partial(4xy^2z)}{\partial z}=4x^3+0+4xy^2=4x(x^2+y^2)[/tex]
Let [tex]\mathcal D[/tex] be the region whose boundary is [tex]\mathcal S[/tex]. Then by the divergence theorem,
[tex]\displaystyle\iint_{\mathcal S}\mathbf f\cdot\mathrm d\mathbf S=\iiint_{\mathcal D}4x(x^2+y^2)\,\mathrm dV[/tex]
Convert to cylindrical coordinates, setting
[tex]x=r\cos\theta[/tex]
[tex]y=r\sin\theta[/tex]
and keeping [tex]z[/tex] as is. Then the volume element becomes
[tex]\mathrm dV=r\,\mathrm dr\,\mathrm d\theta\,\mathrm dz[/tex]
and the integral is
[tex]\displaystyle\iiint_{\mathcal D}4x(x^2+y^2)\,\mathrm dV=\int_{\theta=0}^{\theta=2\pi}\int_{r=0}^{r=1}\int_{z=0}^{z=r\cos\theta+7}4r\cos\theta\cdot r^2\cdot r\,\mathrm dz\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\displaystyle4\iiint_{\mathcal D}r^4\cos\theta\,\mathrm dz\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\dfrac{2\pi}3[/tex]
[tex]\mathrm{div}(\mathbf f)=\dfrac{\partial(x^4)}{\partial x}+\dfrac{\partial(-x^3z^2)}{\partial y}+\dfrac{\partial(4xy^2z)}{\partial z}=4x^3+0+4xy^2=4x(x^2+y^2)[/tex]
Let [tex]\mathcal D[/tex] be the region whose boundary is [tex]\mathcal S[/tex]. Then by the divergence theorem,
[tex]\displaystyle\iint_{\mathcal S}\mathbf f\cdot\mathrm d\mathbf S=\iiint_{\mathcal D}4x(x^2+y^2)\,\mathrm dV[/tex]
Convert to cylindrical coordinates, setting
[tex]x=r\cos\theta[/tex]
[tex]y=r\sin\theta[/tex]
and keeping [tex]z[/tex] as is. Then the volume element becomes
[tex]\mathrm dV=r\,\mathrm dr\,\mathrm d\theta\,\mathrm dz[/tex]
and the integral is
[tex]\displaystyle\iiint_{\mathcal D}4x(x^2+y^2)\,\mathrm dV=\int_{\theta=0}^{\theta=2\pi}\int_{r=0}^{r=1}\int_{z=0}^{z=r\cos\theta+7}4r\cos\theta\cdot r^2\cdot r\,\mathrm dz\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\displaystyle4\iiint_{\mathcal D}r^4\cos\theta\,\mathrm dz\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\dfrac{2\pi}3[/tex]
This question is based on the divergence theorem.Therefore, the flux is [tex]\bold{\int f.dS = \dfrac{2 \pi}{3}}[/tex] by using divergence theorem .
Given:
f(x, y, z) = [tex]\bold{x^{4} i - x^3 z^2 j+4xy^{2}z\; k}[/tex], s is the surface of the solid bounded by the cylinder [tex]\bold{x^2 + y^2 = 1}[/tex] and the planes z = x + 7 and z = 0.
We need to determined the surface integral f · ds.
According to the question,
[tex]\bold{f(x,y,z) = x^{4} i - x^3 z^2 j+4xy^{2}z\; k}[/tex]
[tex]div (f) = \dfrac{\partial (x^4)}{\partial x} + \dfrac{\partial (-x^3 \; z^2)}{\partial y} + \dfrac{\partial (4xy^{2}z)}{\partial z} = 4x^3 + 0 + 4 x y^2 = 4x^3 + 4 x y^2[/tex]
Let D be the region whose boundary is . Then by the divergence theorem,
⇒ [tex]\int\int_s f.dS = \int \int \int _D 4x ( x^2 + y^2) dV[/tex]
Convert the given coordinates into cylindrical coordinates.
We get ,
x = r cos [tex]\Theta[/tex]
y = r sin [tex]\Theta[/tex]
z = z
Then, the dV = r dr d[tex]\theta[/tex] dz.
Now the integral become,
[tex]\int \int \int _D 4x ( x^2 + y^2) dV = \int\limits^{2\pi}_0 \int\limits^1_0 \int\limits^{ r cos\theta+7}_0 4 r cos\theta \; r^2 \; r \; dz \; dr \; d\theta\\\\=4\int\int\int_D r^4 \; cos\theta \; dz \; dr \; d\theta\\\\= \dfrac{2\pi}{3}[/tex]
Therefore, the flux is [tex]\bold{\int f.dS = \dfrac{2 \pi}{3}}[/tex] by using divergence theorem .
For more details, prefer this link:
https://brainly.com/question/23777455
