b) 6
b) isosceles triangle.
c) right triangle
b) 5
A(1, 7), B(-2, 2), and C(4, 2)
Length of AB is:
[tex]AB=\sqrt{(-2-1)^2+(2-7)^2}\\\\\\AB=\sqrt{3^2+5^2}\\\\\\AB=\sqrt{9+25}\\\\\\AB=\sqrt{34}\ units[/tex]
Length of BC is:
[tex]BC=\sqrt{(4-(-2))^2+(2-2)^2}\\\\\\BC=\sqrt{6^2}\\\\\\BC=6\ units[/tex]
Length of AC is:
[tex]AC=\sqrt{(4-1)^2+(2-7)^2}\\\\\\AC=\sqrt{3^2+5^2}\\\\\\AC=\sqrt{34}\ units[/tex]
Since, the length of side AC=length of side AB.
Hence, we get:
The triangle is a isosceles triangle.
Also, the longest side of a triangle is: 6 units.
then:
Length of AD=
[tex]AD=\sqrt{(1-1)^2+(2-7)^2}\\\\\\AD=\sqrt{5^2}\\\\\\AD=5\ units[/tex]
Length BD
[tex]BD=\sqrt{(1-(-2))^2+(2-2)^2}\\\\\\BD=\sqrt{3^2}\\\\\\BD=3\ units[/tex]
and Length AB is: [tex]\sqrt{34}\ units[/tex]
Also, AD,BD and AB satisfy the Pythagorean Theorem.
Since,
[tex]AB^2=\sqrt{AD^2+BD^2}[/tex]
Hence,
∆ABD is a right angled triangle.
and the length of side AD is 5 units