[tex]\bf \qquad \qquad \textit{sum of a finite geometric sequence}
\\\\
S_n=\sum\limits_{i=1}^{n}\ a_1\cdot r^{i-1}\implies S_n=a_1\left( \cfrac{1-r^n}{1-r} \right)\quad
\begin{cases}
n=n^{th}\ term\\
a_1=\textit{first term's value}\\
r=\textit{common ratio}\\
----------\\
a_1=4\\
r=3\\
S_n=160
\end{cases}[/tex]
[tex]\bf 160=4\left( \cfrac{1-3^n}{1-3} \right)\implies 160=4\left( \cfrac{1-3^n}{-2} \right)\implies 160=-2(1-3^n)
\\\\\\
160=2(3^n-1)\implies \cfrac{160}{2}=3^n-1\implies 80=3^n-1
\\\\\\
81=3^n~~
\begin{cases}
81=3\cdot 3\cdot 3\cdot 3\\
\qquad 3^4
\end{cases}\implies 3^4=3^n\implies 4=n[/tex]