By definition the perimeter of an ellipse is given by:
[tex]P = 2 \pi \sqrt{ \frac{a^2+b^2}{2} } [/tex]
Where,
a: semimajor axis of the ellipse
b: minor semiaxis of the ellipse
Substituting values we have:
[tex]P = 2 \pi \sqrt{ \frac{( \frac{15}{2} )^2+( \frac{7.5}{2} )^2}{2} }[/tex]
When doing the corresponding calculations, we have that the perimeter is given by:
[tex]P = 37.254706
[/tex]
Round to the nearest tenth:
[tex]P = 37.3 feet
[/tex]
Answer:
the estimated perimeter of the ellipse is:
[tex]P = 37.3 feet [/tex]