Respuesta :
For this case we will define the following:
A, B: are the values of the triangle angles
a, b: are the values of the lengths of the sides opposite the angles A, B.
We then have to use the law of the sine:
[tex] \frac{sinB}{b} = \frac{sinA}{a} [/tex]
Clearing the angle B we have:
[tex]sinB = \frac{sinA}{a}*b [/tex]
[tex]B = arcsin(\frac{sinA}{a}*b)[/tex]
Substituting values we have:
[tex]B = arcsin(\frac{sin113}{200}*134)[/tex]
[tex]B = 38.08 [/tex]
Answer:
the following is true:
A. angle B=38.08 degrees
A, B: are the values of the triangle angles
a, b: are the values of the lengths of the sides opposite the angles A, B.
We then have to use the law of the sine:
[tex] \frac{sinB}{b} = \frac{sinA}{a} [/tex]
Clearing the angle B we have:
[tex]sinB = \frac{sinA}{a}*b [/tex]
[tex]B = arcsin(\frac{sinA}{a}*b)[/tex]
Substituting values we have:
[tex]B = arcsin(\frac{sin113}{200}*134)[/tex]
[tex]B = 38.08 [/tex]
Answer:
the following is true:
A. angle B=38.08 degrees