Find the solution of 3 times the square root of the quantity of x plus 6 equals negative 12, and determine if it is an extraneous solution.

Respuesta :

For this case we have the following equation:
 [tex]3 \sqrt{x+6}=-12 [/tex]
 Rewriting we have:
 [tex]\sqrt{x+6}= \frac{-12}{3} [/tex]
 [tex]\sqrt{x+6}=-4[/tex]
 We raise both members of the equation to the square:
 [tex](\sqrt{x+6})^2=(-4)^2[/tex]
 Rewriting we have:
 [tex]x+6=16[/tex]
 [tex]x=16-6[/tex]
 [tex]x=10[/tex]
 It's a extraneous solution because equality is not met by substituting x = 10 in the original equation:
 [tex]3 \sqrt{10+6}=-12 [/tex]
 [tex]3 \sqrt{16}=-12 [/tex]
 [tex]3(4)=-12 [/tex]
 [tex]12=-12 [/tex]
 Answer:
 
The solution is:
 
[tex]x=10[/tex]
 It's a extraneous solution