Respuesta :

For this case, the parent function is given by:
 [tex]f (x) = x ^ 2 [/tex]
 We apply the following transformation:
 Expansions and horizontal compressions:
 
The graph of y = f (bx):
 If 0 <b <1, the graph of y = f (x) expands horizontally by the factor of 1 / b. (It lengthens)
 Applying the transformation we have:
 [tex]f (x) = ( \frac{1}{4} x) ^ 2 [/tex]
 Therefore, the stretch factor is 4, due to:
 [tex] \frac{1}{b} = \frac{1}{\frac{1}{4} } [/tex]
 Rewriting:
 [tex] \frac{1}{b} = 4 [/tex]
 Answer:
 
the equation of the new function is:
 
[tex]f (x) = ( \frac{1}{4} x) ^ 2 [/tex]
ACCESS MORE