Respuesta :

The set [tex]D[/tex] is the square with side length 2 centered at the origin, with vertices at [tex](\pm1,\pm1)[/tex].

First check for possible critical points, where the first-order partial derivatives vanish:

[tex]f_x=2x+2xy=0\implies 2x(1+y)=0\implies x=0\text{ or }y=-1[/tex]
[tex]f_y=2y+x^2=0\implies 2y=-x^2[/tex]


If [tex]x=0[/tex], then [tex]y=0[/tex]; if [tex]y=-1[/tex], then [tex]-x^2=-2\implies x=\pm\sqrt2[/tex]. However, [tex]|\pm\sqrt2|>1[/tex], so any points with this [tex]x[/tex]-coordinate fall outside of [tex]D[/tex]. Thus only one critical point occurs at (0, 0) within the given region.

Check the Hessian of [tex]f[/tex] at this point:

[tex]\mathbf H(x,y)=\begin{bmatrix}f_{xx}&f_{xy}\\f_{yx}&f_{yy}\end{bmatrix}=\begin{bmatrix}2+2y&2x\\2x&2\end{bmatrix}[/tex]
[tex]\implies\mathbf H(0,0)=\begin{bmatrix}2&0\\0&2\end{bmatrix}[/tex]

This matrix is positive definite, which means [tex]f(x,y)[/tex] attains a minimum at (0, 0) with a value of [tex]f(0,0)=6[/tex].

Now we consider the boundary:

If [tex]x=1[/tex], then [tex]f(1,y)=y^2+y+7=[/tex], which attains a max when [tex]y=1[/tex] and a min when [tex]y=-\dfrac12[/tex]. At these points, we have [tex]f(1,1)=9[/tex] and [tex]f\left(1,-\dfrac12\right)=\dfrac{27}4[/tex].

If [tex]x=-1[/tex], then [tex]f(-1,y)=f(1,y)[/tex] and we get the same critical points as in the previous case.

If [tex]y=1[/tex], then [tex]f(x,1)=2x^2+7[/tex], which attains a max when [tex]x=\pm1[/tex] and a min when [tex]x=0[/tex]. At these values, we get [tex]f(-1,1)=f(1,1)=9[/tex] and [tex]f(0,1)=7[/tex].

If [tex]y=-1[/tex], then [tex]f(x,-1)=7[/tex].

So we found an absolute maximum of 9 at (-1, 1) and (1, 1), and an absolute minimum of 6 at (0, 0).

Otras preguntas

ACCESS MORE