Match each power of i with its multiplicative inverse.

1) i
2) i^2
3) i^3
4) i^4

Each number has one of the following answers answers cannot be used more than once.
Answer 1) i
Answer 2) 1
Answer 3) -i
Answer 4) -1

Respuesta :


By definition we have to:
 In mathematics, the inverse multiplicative, reciprocal or inverse of a non-zero number x, is the number, denoted as 1/x or x -1, which multiplied by x gives 1.
 We have then:

 1) i
 The multiplicative inverse is:
 [tex] \frac{1}{i} [/tex]
 Rewriting we have:
 [tex] \frac{1}{i} \frac{i}{i} [/tex]
 [tex] \frac{i}{i^2} [/tex]
 [tex] \frac{i}{-1} [/tex]
 [tex]-i[/tex]
 Answer 3) -i

 2) i^2
 The multiplicative inverse is:
 [tex] \frac{1}{i^2} [/tex]
 Rewriting we have:
 [tex] \frac{1}{-1} [/tex]
 [tex]-1[/tex]
 Answer 4) -1

 3) i^3
 The multiplicative inverse is:
 [tex] \frac{1}{i^3} [/tex]
 Rewriting we have:
 [tex] \frac{1}{i*i^2} [/tex]
 [tex] \frac{1}{i^2}*\frac{1}{i} [/tex]
 [tex] \frac{1}{-1}*\frac{1}{i}*\frac{i}{i} [/tex]
 [tex] (-1)*\frac{i}{i^2} [/tex]
 [tex](-1)* \frac{i}{-1} [/tex]
 [tex]i[/tex]
 Answer 1) i

 4) i^4
 The multiplicative inverse is:
 [tex] \frac{1}{i^4} [/tex]
 Rewriting we have:
 [tex] \frac{1}{i^2i^2} [/tex]
 [tex] \frac{1}{(-1)(-1)} [/tex]
 [tex] \frac{1}{1} [/tex]
 [tex]1[/tex]
 Answer 2) 1

Answer:

  1. [tex]i=\frac{1}{i}*\frac{-i}{-1}=-i[/tex]
  2. [tex]i^2=\frac{1}{i^2}*\frac{-i^2}{-i^2}=-1[/tex]
  3. [tex]i^3=\frac{1}{i^3}*\frac{-i^3}{-i^3}=i[/tex]
  4. [tex]i^4=\frac{1}{i^4}*\frac{-i^4}{-i^4}=1[/tex]

Step-by-step explanation:

To find the multiplicative inverse of a complex number, you do as follows:

The inverse is found by reciprocating the original complex number. ([tex]\frac{1}{complex number}[/tex]) Multiply the numerator and denominator of the reciprocal by conjugate of the denominator and simplify.

Hope this helps!!

ACCESS MORE