Respuesta :
By definition we have to:
In mathematics, the inverse multiplicative, reciprocal or inverse of a non-zero number x, is the number, denoted as 1/x or x -1, which multiplied by x gives 1.
We have then:
1) i
The multiplicative inverse is:
[tex] \frac{1}{i} [/tex]
Rewriting we have:
[tex] \frac{1}{i} \frac{i}{i} [/tex]
[tex] \frac{i}{i^2} [/tex]
[tex] \frac{i}{-1} [/tex]
[tex]-i[/tex]
Answer 3) -i
2) i^2
The multiplicative inverse is:
[tex] \frac{1}{i^2} [/tex]
Rewriting we have:
[tex] \frac{1}{-1} [/tex]
[tex]-1[/tex]
Answer 4) -1
3) i^3
The multiplicative inverse is:
[tex] \frac{1}{i^3} [/tex]
Rewriting we have:
[tex] \frac{1}{i*i^2} [/tex]
[tex] \frac{1}{i^2}*\frac{1}{i} [/tex]
[tex] \frac{1}{-1}*\frac{1}{i}*\frac{i}{i} [/tex]
[tex] (-1)*\frac{i}{i^2} [/tex]
[tex](-1)* \frac{i}{-1} [/tex]
[tex]i[/tex]
Answer 1) i
4) i^4
The multiplicative inverse is:
[tex] \frac{1}{i^4} [/tex]
Rewriting we have:
[tex] \frac{1}{i^2i^2} [/tex]
[tex] \frac{1}{(-1)(-1)} [/tex]
[tex] \frac{1}{1} [/tex]
[tex]1[/tex]
Answer 2) 1
Answer:
- [tex]i=\frac{1}{i}*\frac{-i}{-1}=-i[/tex]
- [tex]i^2=\frac{1}{i^2}*\frac{-i^2}{-i^2}=-1[/tex]
- [tex]i^3=\frac{1}{i^3}*\frac{-i^3}{-i^3}=i[/tex]
- [tex]i^4=\frac{1}{i^4}*\frac{-i^4}{-i^4}=1[/tex]
Step-by-step explanation:
To find the multiplicative inverse of a complex number, you do as follows:
The inverse is found by reciprocating the original complex number. ([tex]\frac{1}{complex number}[/tex]) Multiply the numerator and denominator of the reciprocal by conjugate of the denominator and simplify.
Hope this helps!!