check the picture below.
so the chord is the one in red there, making the segment, in green there, with a central angle of 45°, and the minor segment will be that green one.
[tex]\bf \textit{area of a segment of a circle}\\\\
A=\cfrac{r^2}{2}\left[ \cfrac{\pi \theta }{180} - sin(\theta) \right]~~
\begin{cases}
r=radius\\
\theta =angle~in\\
\qquad degrees\\
------\\
r=3\\
\theta =45
\end{cases}
\\\\\\
A=\cfrac{3^2}{2}\left[ \cfrac{\pi(45) }{180} - sin(45^o) \right]\implies A=\cfrac{9}{2}\left[ \cfrac{\pi }{4}-\cfrac{\sqrt{2}}{2} \right]
\\\\\\
A=\cfrac{9}{2}\left( \cfrac{\pi -2\sqrt{2}}{4} \right)\implies A\approx 0.3523112199491[/tex]