Respuesta :
[tex]\bf \lim\limits_{x\to -10}~\cfrac{x^2-100}{x+10}\implies \cfrac{\stackrel{\textit{difference of squares}}{x^2-10^2}}{x+10}\implies \cfrac{(x-10)(\underline{x+10})}{\underline{x+10}}
\\\\\\
\lim\limits_{x\to -10}~x-10\implies \lim\limits_{x\to -10}~-10-10\implies -20[/tex]
The value of the limit of the function algebraically will be -20. Then the correct option is B.
What is the limit?
The value that approaches the output for the given input value. Limits are a very important tool in calculus.
The limit is given as,
[tex]\displaystyle \lim_{x \to -10} \left ( \dfrac{x^2-100}{x+10} \right )[/tex]
Apply L'hospital rule, then we have
[tex]\displaystyle \lim_{x \to -10} \left ( \dfrac{\dfrac{d}{dx}(x^2-100)}{\dfrac{d}{dx}(x+10)} \right )\\\displaystyle \lim_{x \to -10} \left ( \dfrac{2x}{1} \right )\\[/tex]
Put the limit, then we have
⇒ 2(-10)
⇒ -20
Then the correct option is B.
More about the limit link is given below.
https://brainly.com/question/8533149
#SPJ2