Respuesta :
Answer:
[tex]-10p^4q[/tex]
Step-by-step explanation:
Using the exponent rules:
[tex]\sqrt[n]{a^n} = a[/tex]
[tex]\sqrt[3]{-1} = -1[/tex]
To find the cube root of :
[tex]-1000p^{12}q^3[/tex]
then;
[tex]\sqrt[3]{-1000p^{12}q^3}[/tex]
We can write :
[tex]1000 = 10 \cdot 10 \cdot 10 = 10^3[/tex]
[tex]p^{12} = (p^4)^3[/tex]
then;
[tex]\sqrt[3]{-10^3 \cdot (p^4)^3 \cdot q^3}[/tex]
Apply the exponent rules:
[tex]-10 \cdot p^4 \cdot q[/tex]
⇒[tex]-10p^4q[/tex]
Therefore, the cube root of [tex]-1000p^{12}q^3[/tex] is, [tex]-10p^4q[/tex]