Respuesta :

∛(-1000p^12q^3) 
= -10p^4 q

Hope it helps

Answer:

[tex]-10p^4q[/tex]

Step-by-step explanation:

Using the exponent rules:

[tex]\sqrt[n]{a^n} = a[/tex]

[tex]\sqrt[3]{-1} = -1[/tex]

To find the cube root of :

[tex]-1000p^{12}q^3[/tex]

then;

[tex]\sqrt[3]{-1000p^{12}q^3}[/tex]

We can write :

[tex]1000 = 10 \cdot 10 \cdot 10 = 10^3[/tex]

[tex]p^{12} = (p^4)^3[/tex]

then;

[tex]\sqrt[3]{-10^3 \cdot (p^4)^3 \cdot q^3}[/tex]

Apply the exponent rules:

[tex]-10 \cdot p^4 \cdot q[/tex]

⇒[tex]-10p^4q[/tex]

Therefore, the cube root of [tex]-1000p^{12}q^3[/tex] is, [tex]-10p^4q[/tex]