Let these two numbers be [tex]x[/tex] and [tex]y[/tex]. Clearly, [tex]x\neq y[/tex], because [tex]|x-y|=0\neq14[/tex]. Let's assume [tex]x<y[/tex]. Then
[tex]\begin{cases}x+y=20\\y-x=14\end{cases}[/tex]
From the second equation, we can obtain [tex]y=x+14[/tex], so substituting for [tex]y[/tex] in the first equation gives
[tex]x+(x+14)=2x+14=20\implies 2x=6\implies x=3[/tex]
which means [tex]y=3+14=17[/tex].