Which pair of funtions is not a pair of inverse functions? please help!!
![Which pair of funtions is not a pair of inverse functions please help class=](https://us-static.z-dn.net/files/df3/40df7ab0289f43f245f9295104c17068.jpg)
Answer:
[tex]f(x)=\frac{x}{x+20} , g(x)=\frac{20x}{x-1}[/tex]
Step-by-step explanation:
we know that
To find the inverse of a function, exchange variables x for y and y for x. Then clear the y-variable to get the inverse function.
we will proceed to verify each case to determine the solution of the problem
case A) [tex]f(x)=\frac{x+1}{6} , g(x)=6x-1[/tex]
Find the inverse of f(x)
Let
y=f(x)
Exchange variables x for y and y for x
[tex]x=\frac{y+1}{6}[/tex]
Isolate the variable y
[tex]6x=y+1[/tex]
[tex]y=6x-1[/tex]
Let
[tex]f^{-1}(x)=y[/tex]
[tex]f^{-1}(x)=6x-1[/tex]
therefore
f(x) and g(x) are inverse functions
case B) [tex]f(x)=\frac{x-4}{19} , g(x)=19x+4[/tex]
Find the inverse of f(x)
Let
y=f(x)
Exchange variables x for y and y for x
[tex]x=\frac{y-4}{19}[/tex]
Isolate the variable y
[tex]19x=y-4[/tex]
[tex]y=19x+4[/tex]
Let
[tex]f^{-1}(x)=y[/tex]
[tex]f^{-1}(x)=19x+4[/tex]
therefore
f(x) and g(x) are inverse functions
case C) [tex]f(x)=x^{5}, g(x)=\sqrt[5]{x}[/tex]
Find the inverse of f(x)
Let
y=f(x)
Exchange variables x for y and y for x
[tex]x=y^{5}[/tex]
Isolate the variable y
fifth root both members
[tex]y=\sqrt[5]{x}[/tex]
Let
[tex]f^{-1}(x)=y[/tex]
[tex]f^{-1}(x)=\sqrt[5]{x}[/tex]
therefore
f(x) and g(x) are inverse functions
case D) [tex]f(x)=\frac{x}{x+20} , g(x)=\frac{20x}{x-1}[/tex]
Find the inverse of f(x)
Let
y=f(x)
Exchange variables x for y and y for x
[tex]x=\frac{y}{y+20}[/tex]
Isolate the variable y
[tex]x(y+20)=y[/tex]
[tex]xy+20x=y[/tex]
[tex]y-xy=20x[/tex]
[tex]y(1-x)=20x[/tex]
[tex]y=20x/(1-x)[/tex]
Let
[tex]f^{-1}(x)=y[/tex]
[tex]f^{-1}(x)=20x/(1-x)[/tex]
[tex]\frac{20x}{1-x}\neq \frac{20x}{x-1}[/tex]
therefore
f(x) and g(x) is not a pair of inverse functions