Respuesta :
By definition we have that the average rate of change of the function is:
[tex]AVR = \frac{f(x2) - f(x1)}{x2 - x1} [/tex]
Evaluating the function for the complete interval we have that the AVR is given by:
[tex]AVR = \frac{115 - (-5)}{10 - (-2)} [/tex]
Rewriting we have:
[tex]AVR = \frac{115+5}{10+2} [/tex]
Simplifying the expression we have:
[tex]AVR = \frac{120}{12} [/tex]
[tex]AVR = 10 [/tex]
Answer:
the average rate of change of the function defined by the table is:
[tex]AVR = 10 [/tex]
Answer:
Average rate of change is 10 .
Step-by-step explanation:
Y = -5 , 35 , 75 , 115
X = -2 , 2 , 6 , 10
y2 - y1
m = ---------------
x2 - x1
-5 - 35 -40
m = --------------- = ----- - = 10
-2 - 2 -4
75 - 115 -40
m = --------------- = ----- - = 10
6 - 10 -4