To evaluate a number with a negative fraction exponent, you need to take care of two things.
1) The negative exponent.
2) The fraction as an exponent.
1) Negative exponent
[tex] a^{-n} = \dfrac{1}{a^n} [/tex]
2) Fractional exponent
[tex] a^{\frac{m}{n}} = \sqrt[n] {a^m} = (\sqrt[n]{a})^m [/tex]
Example:
Evaluate
[tex] 8^{- \frac{2}{3}} [/tex]
First, take care of the negative exponent.
[tex]8^{-\frac{2}{3}} = \dfrac{1}{8^{\frac{2}{3}}}=[/tex]
Now we take care of the fractional exponent by using a root.
[tex]= \dfrac{1}{\sqrt[3] {8^2}} = \dfrac{1}{(\sqrt[3] {8})^2} =[/tex]
[tex] = \dfrac{1}{2^2} = \dfrac{1}{4} [/tex]