Respuesta :

Use the method of Lagrange multipliers. We have Lagrangian

[tex]L(x,y,z,\lambda_1,\lambda_2)=x^2+y^2+z^2+\lambda_1(x+2y+z-7)+\lambda_2(x-y-6)[/tex]

with partial derivatives (set equal to 0) of

[tex]L_x=2x+\lambda_1+\lambda_2=0[/tex]
[tex]L_y=2y+2\lambda_1-\lambda_2=0[/tex]
[tex]L_z=2z+\lambda_1=0[/tex]
[tex]L_{\lambda_1}=x+2y+z-7=0[/tex]
[tex]L_{\lambda_2}=x-y-6=0[/tex]

As [tex]x+2y+z=7[/tex], and [tex]x-y=6[/tex], we can obtain

[tex]\dfrac12L_x+L_y+\dfrac12L_z=0\implies3\lambda_1-\dfrac12\lambda_2=-7[/tex]
[tex]L_x-L_y=0\implies\lambda_1-2\lambda_2=12[/tex]
[tex]\begin{cases}3\lambda_1-\frac12\lambda_2=-7\\\lambda_1-2\lambda_2=12\end{cases}\implies\lambda_1=-\dfrac{40}{11},\lambda_2=-\dfrac{86}{11}[/tex]

From this, we find a single critical point:

[tex]2x-\dfrac{40}{11}-\dfrac{86}{11}=0\implies x=\dfrac{63}{11}[/tex]
[tex]\dfrac{63}{11}-y=6\implies y=-\dfrac3{11}[/tex]
[tex]\dfrac{63}{11}-\dfrac6{11}+z=7\implies z=\dfrac{20}{11}[/tex]

At this point, we have a value of

[tex]f\left(\dfrac{63}{11},-\dfrac3{11},\dfrac{20}{11}\right)=\dfrac{398}{11}[/tex]

To determine what kind of extremum occurs at this point, we check the Hessian of [tex]f(x,y,z)[/tex]:

[tex]\mathbf H(x,y,z)=\begin{bmatrix}f_{xx}&f_{xy}&f_{xz}\\f_{yx}&f_{yy}&f_{yz}\\f_{zx}&f_{zy}&f_{zz}\end{bmatrix}=\begin{bmatrix}2&0&0\\0&2&0\\0&0&2\end{bmatrix}[/tex]

We observe that [tex]\det\mathbf H(x,y,z)=8>0[/tex] at any point [tex](x,y,z)[/tex], and that the eigenvalues of this matrix are all positive (2 with multiplicity 3), so [tex]\mathbf H[/tex] is positive definite. By the second partial derivative test, this means [tex]f(x,y,z)[/tex] attains a minimum at this critical point. Meanwhile, [tex]f[/tex] has no maximum value.