For this case we have a function of the form:
[tex]y = A * (b) ^ x
[/tex]
Where,
A: initial amount
b: growth rate
x: time in minutes
Substituting values we have:
[tex]y = 1 * (2) ^{( \frac{1}{30}x)}
[/tex]
By the time the sample weighs 583.8 g, we have:
[tex]583.8 = 1 * (2) ^ {( \frac{1}{30}x)}
[/tex]
From here, we clear x:
[tex]log2 ((2) ^ {(\frac{1}{30} x)}) = log2 (583.8)[/tex]
[tex] \frac{1}{30}x = log2 (583.8)
[/tex]
[tex]x = 30 * log2 (583.8)
x = 276 minutes
[/tex]
Answer:
the sample will weight 583.8 g at 276 minutes