Respuesta :
Area = side AB * side BC = (5x + 5x + 3)(3x + 92x - 4)
= (10x + 3)(95x - 4) = 950x^2 - 40x + 285x - 12
= 950x^2 + 245x - 12 Answer
This cannot be negative so restriction on x is 950x^2 + 245x > 12
That is x > 0.0421
= (10x + 3)(95x - 4) = 950x^2 - 40x + 285x - 12
= 950x^2 + 245x - 12 Answer
This cannot be negative so restriction on x is 950x^2 + 245x > 12
That is x > 0.0421
Answer:
[tex]A=950x^2+245-12\\\\\{x\in R: (\frac{4}{95} <x<-\frac{3}{10} )\}[/tex]
Step-by-step explanation:
The area of a rectangle is given by:
[tex]A=w*h[/tex]
[tex]Where:\\\\w=width\\h=height[/tex]
Let:
[tex]h=\overline{\rm AB}=5x+5x+3=10x+3\\\\and\\\\w=\overline{\rm BC}=3x+92x-4=95x-4[/tex]
So, the area is given by:
[tex]A=(10x+3)*(95x-4)=950x^2-40x+285x-12=950x^2+245x-12[/tex]
It wouldn't make sense if the result leads us to an area equal to 0 or to a negative area, therefore:
[tex]A=950x^2+245x-12>0[/tex]
Solving for x using the quadratic formula:
[tex]x=\frac{-b\pm \sqrt{b^2-4ac} }{2a} =\frac{-245\pm \sqrt{245^2-4(950)(-12)} }{2(950)} =\frac{-245\pm \sqrt{60025+45600} }{1900}\\\\x=\frac{-245\pm \sqrt{105625} }{1900}=\frac{-245\pm 325}{1900}\\\\Hence\\\\x>\frac{4}{95} \\\\and\\\\x<\frac{-3}{10}[/tex]
Therefore, the area is given by:
[tex]A=950x^2+245-12\\\\\{x\in R: (\frac{4}{95} <x<-\frac{3}{10} )\}[/tex]