For this case we have the following expression:
[tex] \frac{4m-17}{m^2-16} + \frac{3m-11}{m^2-16}[/tex]
Since the denominator is equal, then we can add the numerator.
We have then:
[tex] \frac{(4m-17) + (3m-11)}{m^2-16} [/tex]
Adding similar terms we have:
[tex] \frac{(4m+3m) + (-17-11)}{m^2-16} [/tex]
Rewriting we have:
[tex] \frac{7m - 28}{m^2-16} [/tex]
Doing common factor in the numerator we have:
[tex] \frac{7(m - 4)}{m^2-16} [/tex]
Factoring the denominator we have:
[tex] \frac{7(m - 4)}{(m-4)(m+4)} [/tex]
Canceling similar terms we have:
[tex] \frac{7}{m+4} [/tex]
Answer:
The simplest form of the expression has 7 in the numerator and m+4 in the denominator.