The volume of a sphere is 3,000 cm3. Find radius then figure what is the surface area of the sphere. Find the radius of the sphere by setting the volume equal to the formula [tex]V=\frac{4}{3} \pi r^{2}[/tex]

Respuesta :

4/3*pi*r^3=3000cm^3

*3. *3

4*pi*r^3=9000cm^3

Root. Root


4*pi*r=94.8683298051

/4pi. /4pi

R=7.54938181568

Surface area-4*pi*r^2

4*pi*7.54938181568^2

=716.197243915cm^2
First, find the radius
V = 3,000
[tex] \dfrac{4}{3} \times \pi \times r^{2}= 3,000 [/tex]
[tex]\pi \times r^{2}= 3,000 \times \dfrac{3}{4} [/tex]
[tex]\pi \times r^{2}= \dfrac{9,000}{4}[/tex]
[tex]\pi \times r^{2}=2,250[/tex] 
# remember the equation above in order to find the surface area #
[tex]r^{2}= \dfrac{2,250}{ \pi } [/tex]
[tex]r = \sqrt{\dfrac{2,250}{ \pi }}[/tex]
this is the radius in the term of π
[tex]r = \sqrt{\dfrac{2,250}{ 3.14}}[/tex]
r = 26.7686...
to the nearest tenth
r = 26.8
The radius is approximately 26.8 cm

Second, find the surface area
The following formula is a formula to find the surface area of a sphere
sa = 4 × π × r²

Remember the value of π × r² when we tried to solve for radius? See hash tag # above, π × r² = 2,250, thus
sa = 4 × π × r²
sa = 4 × 2,250
sa = 9,000
The surface area is 9,000 cm²
ACCESS MORE