Converting to spherical coordinates, we use
[tex]x=\rho\cos\theta\sin\varphi[/tex]
[tex]y=\rho\sin\theta\sin\varphi[/tex]
[tex]z=\rho\cos\varphi[/tex]
[tex]\implies\mathrm dV=\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi[/tex]
Then
[tex]\displaystyle\iiint_E(x^2+y^2+z^2)\,\mathrm dV=\int_{\varphi=0}^{\varphi=\pi}\int_{\theta=0}^{\theta=2\pi}\int_{\rho=0}^{\rho=9}\rho^4\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi=\frac{236,196\pi}5[/tex]