Respuesta :

If sin theta = 21/29 and we know that theta is in Quadrant I, then

by the Pyth. Theorem,  21^2 + (adjacent side)^2 = 29^2.

Thus, adj^2 = 29^2 - 21^2, or     adj^2 = 841 - 441  =   400.

Then adj = plus or minus 20.    What is cos theta if theta is in Q I? 

cos theta = adj / hyp  =  20/29

Applying a trigonometric relation, it is found that [tex]\cos{\theta} = \frac{20}{29}[/tex]

The sine and cosine of an angle [tex]\theta[/tex] are related by the following equation:

[tex]\sin^2{\theta} + \cos^{2}{\theta} = 1[/tex]

In this problem, we have that:

[tex]\sin{\theta} = \frac{21}{29}[/tex]

Hence:

[tex]\sin^2{\theta} + \cos^{2}{\theta} = 1[/tex]

[tex]\cos^{2}{\theta} = 1 - \sin^2{\theta}[/tex]

[tex]\cos^{2}{\theta} = 1 - \left(\frac{21}{29}\right)^2

[tex]\cos^{2}{\theta} = \frac{400}{29^2}[/tex]

[tex]\cos{\theta} = \pm \sqrt{\frac{400}{29^2}}[/tex]

First quadrant, hence, the cosine is positive, and:

[tex]\cos{\theta} = \frac{20}{29}[/tex]

For more on trigonometric relations, you can check https://brainly.com/question/24680641