Respuesta :
The left side of this equation is already a perfect square: x^2-10x+25=35.
Rewriting it, we get (x-5)^2 = 35.
Taking the sqrt of both sides, x-5 = sqrt(35).
Solving for x: x = 5 plus or minus sqrt(35) (answers)
Rewriting it, we get (x-5)^2 = 35.
Taking the sqrt of both sides, x-5 = sqrt(35).
Solving for x: x = 5 plus or minus sqrt(35) (answers)
Answer:
[tex]\text{The solution is }x=5\pm \sqrt{35}[/tex]
Step-by-step explanation:
Given the equation
[tex]x^2-10x+25=35[/tex]
we have to solve the above equation for x
[tex]x^2-10x+25=35[/tex]
Subtracting 35 from both sides, we get
[tex]x^2-10x-10=0[/tex]
[tex]\text{Comparing above equation with }ax^2+bx+c=0[/tex]
a=1, b=-10, c=-10
By quadratic formula, the solution is
[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
[tex]x=\frac{-(-10)\pm \sqrt{(-10)^2-4(1)(-10)}}{2(1)}[/tex]
[tex]x=\frac{10\pm \sqrt{100+40}}{2}[/tex]
[tex]x=\frac{10 \pm \sqrt{140}}{2}[/tex]
[tex]x=\frac{10 \pm 2\sqrt{35}}{2}[/tex]
[tex]x=5\pm \sqrt{35}[/tex]
which is required solution.