Respuesta :

The left side of this equation is already a perfect square:    x^2-10x+25=35.

Rewriting it, we get (x-5)^2 = 35.

Taking the sqrt of both sides,    x-5 = sqrt(35).

Solving for x:    x = 5 plus or minus sqrt(35)    (answers)

Answer:

[tex]\text{The solution is }x=5\pm \sqrt{35}[/tex]    

Step-by-step explanation:

Given the equation

[tex]x^2-10x+25=35[/tex]

we have to solve the above equation for x

[tex]x^2-10x+25=35[/tex]

Subtracting 35 from both sides, we get

[tex]x^2-10x-10=0[/tex]

[tex]\text{Comparing above equation with }ax^2+bx+c=0[/tex]

a=1, b=-10, c=-10

By quadratic formula, the solution is

[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

[tex]x=\frac{-(-10)\pm \sqrt{(-10)^2-4(1)(-10)}}{2(1)}[/tex]

[tex]x=\frac{10\pm \sqrt{100+40}}{2}[/tex]

[tex]x=\frac{10 \pm \sqrt{140}}{2}[/tex]

[tex]x=\frac{10 \pm 2\sqrt{35}}{2}[/tex]

[tex]x=5\pm \sqrt{35}[/tex]

which is required solution.

ACCESS MORE