Respuesta :

If the order of points is A, O, B, then the midpoints of AO and OB will be separated by half the length of AB: (12 cm + 9 cm)/2 = 10.5 cm.
aachen

Answer:

10.5 cm

Step-by-step explanation:

Given: Points [tex]\text{o}[/tex],[tex]\text{a}[/tex] and [tex]\text{b}[/tex] lie on the same line. [tex]\text{oa}[/tex] [tex]=12\text{cm}[/tex], [tex]\text{ob}[/tex]  [tex]=8\text{cm}[/tex], point [tex]\text{o}[/tex] lies on the segment [tex]\text{ab}[/tex].

To Find: find the distance between the midpoints of segments oa and ob.

Solution:

point [tex]\text{o}[/tex] lies on the segment [tex]\text{ab}[/tex]

Therefore,

          [tex]\text{ab}=\text{oa}+\text{ob}[/tex]

distance of midpoint of [tex]\text{oa}[/tex] from [tex]\text{o}[/tex]

                                   [tex]\frac{\text{oa}}{2}[/tex]

                                   [tex]6\text{cm}[/tex]

distance of midpoint of [tex]\text{ob}[/tex] from [tex]\text{o}[/tex]

                                   [tex]\frac{\text{ob}}{2}[/tex]

                                   [tex]4.5\text{cm}[/tex]

Distance between midpoints of  [tex]\text{oa}[/tex] and [tex]\text{ob}[/tex]

                                   [tex]=\frac{\text{oa}}{2}+\frac{\text{ob}}{2}[/tex]

putting values

                                   [tex]=6+4.5[/tex]

                                   [tex]=10.5[/tex] [tex]\text{cm}[/tex]

Hence distance between midpoints of line segments [tex]\text{oa}[/tex] and [tex]\text{ob}[/tex] is  [tex]=10.5[/tex] [tex]\text{cm}[/tex]