The function g(x) is a transformation of the parent function f(x). Describe how f(x) was transformed to make g(x).
![The function gx is a transformation of the parent function fx Describe how fx was transformed to make gx class=](https://us-static.z-dn.net/files/d3e/a043156397201e7c42b26b041023dd61.png)
Answer:
C. Horizontal or Vertical shift
Step-by-step explanation:
Specifically, this is a vertical shift.
If we compare f(x) and g(x) results for each X value, we can notice there is a constant difference of 2. Graphically this makes the graph to move down.
[tex]x=-2 \\ f(x)=\frac{1}{9} \\ g(x)=\frac{1}{9}-2=\frac{1}{9}-\frac{18}{9}=-\frac{17}{9}\\x=-1 \\ f(x)=\frac{1}{3} \\ g(x)=\frac{1}{3}-2=\frac{1}{3}-\frac{6}{3}=-\frac{5}{3}\\x=2 \\ f(x)=9 \\ g(x)=9-2=7\\x=3 \\ f(x)=27 \\ g(x)=27-2=25\\x=4 \\ f(x)=81 \\ g(x)=81-2=79[/tex]