Respuesta :
For this case we have a function of the form:
[tex]y = A * (b) ^ x [/tex] Where,
A: initial amount
b: decrease rate
x: time in years
Substituting values we have:
[tex]y = 1300 * (0.97) ^ x [/tex]
For 2010 we have:
[tex]y = 1300 * (0.97) ^ 6 y = 1083[/tex]
Answer:
an exponential decay function to model this situation is:
y = 1300 * (0.97) ^ x
The population in 2010 is:
y = 1083
[tex]y = A * (b) ^ x [/tex] Where,
A: initial amount
b: decrease rate
x: time in years
Substituting values we have:
[tex]y = 1300 * (0.97) ^ x [/tex]
For 2010 we have:
[tex]y = 1300 * (0.97) ^ 6 y = 1083[/tex]
Answer:
an exponential decay function to model this situation is:
y = 1300 * (0.97) ^ x
The population in 2010 is:
y = 1083
Answer:
1083 fish
Step-by-step explanation:
The fish population of Lake Collins is decreasing at a rate of 3% per year.
If starting population were about 1,300 in 2004 so the sequence will be
1,300, (1300 - 3% of 1300)..............
or 1300, 1261,.........
We know exponential function is modeled by
[tex]A_{n} =A_{0} (r)^{n}[/tex]
Where [tex]A_{n}[/tex] = population at time t.
[tex]A_{0}[/tex] = initial population
r = common ratio
n = time in years.
Common ratio (r) = [tex]\frac{\text{second term}}{\text{first term}}[/tex]
= [tex]\frac{1261}{1300}=(0.97)[/tex]
Then the function will be [tex]A_{n}=1300(0.97)^n[/tex]
Then population in year 2010 (after 6 years) will be
[tex]A_{6}=1300(0.97)^6[/tex]
= 1300(0.8329)
= 1082.86 ≈ 1083 fishes