Answer:
−2sin(Θ)cos(Θ) − cos(Θ) + sin(Θ) − 1
Step-by-step explanation:
[tex](sin O - cos O) - (sin O + cos O)^2[/tex]
[tex](sin A + cos A)^2= sin^2A + cos^2A+2sinAcosA[/tex]
Apply identity, sin^2A+cos^2A= 1
[tex](sin O - cos O) - (sin O + cos O)^2[/tex]
Replace 1 for sin^2O+cos^2O= 1
[tex](sin O - cos O) - (sin O + cos O)^2[/tex]
[tex](sin O - cos O) -(1+2sin(O)cos(O))[/tex]
REmove the parenthesis and simplify if possible
[tex]sin O - cos O -1-2sin(O)cos(O))[/tex]
So option D is correct