Respuesta :

To expand a binomial of the form [tex](a+b)^n[/tex], we are going to use Pascal's triangle.
We can infer from our problem that [tex]a=3x^2[/tex], [tex]b=2y^3[/tex], and [tex]n=4[/tex]. Since [tex]n=4[/tex], we are going to use the fourth row of Pascal's triangle to get the coefficients of our expansion, so the coefficients of our expansion will be: 1      4     6     4     1
Now that we have our coefficients, we cant expand our binomial:
[tex](3x^2+2y^3)^4=1(3x^2)^4(2y^3)^0+4(3x^2)^3(2y^3)^1+6(3x^2)^2(2y^3)^2+[/tex][tex]4(3x^2)^1(2y^3)^3+1(3x^2)^0(2y^3)^4[/tex]

[tex]=81x^8+216x^6y^3+216x^4y^6+96x^2y^9+16y^2[/tex]

Since the third term of the expansion is [tex]216x^4y^6[/tex], we can conclude that the coefficient of the third term is 216.


Ver imagen cerverusdante
ACCESS MORE