Respuesta :
[tex]\bf \textit{Double Angle Identities}
\\\\
sin(2\theta)=2sin(\theta)cos(\theta)\\\\
-------------------------------\\\\
\begin{cases}
x=rcos(\theta )\\
y=rsin(\theta )
\end{cases}\qquad 2xy=1\implies 2rcos(\theta )rsin(\theta )=1
\\\\\\
r^2\cdot 2cos(\theta )sin(\theta )=1\implies r^2\cdot sin(2\theta )=1[/tex]
Answer:
the second option, [tex]r^2sin2[/tex]θ=1
Step-by-step explanation:
x=rcosθ y=rsinθ sin2θ=2cosθsinθ
2rcosθrsinθ=1
divide by r^2 because there are 2 r's
2cosθsinθ=1/r^2
sin2θ=1/r^2 <----multiply each side by r^2
r^2sin2θ=1
