Respuesta :
I'd like to see some of your own efforts here. This is the third time you've posted two "factor completelyl" problems, without sharing what you've already done.
3v^2 - 8v - 16 cannot be reduced. Thus, your best choice to find roots is to apply the quadratic formula:
8 plus or minus sqrt( 64-4(3)(-16) )
v = ---------------------------------------------------
2(3)
8 plus or minus sqrt( 64 + 192 )
= ---------------------------------------------
6
8 plus or minus sqrt(256)
= -------------------------------------
6
= 8 + 16, all divided by 6, or 8 - 16, all divided by 6
= 4 or -8/6, or 4 or -4/3.
The factors are (v-4) and (v + 4/3).
3v^2 - 8v - 16 cannot be reduced. Thus, your best choice to find roots is to apply the quadratic formula:
8 plus or minus sqrt( 64-4(3)(-16) )
v = ---------------------------------------------------
2(3)
8 plus or minus sqrt( 64 + 192 )
= ---------------------------------------------
6
8 plus or minus sqrt(256)
= -------------------------------------
6
= 8 + 16, all divided by 6, or 8 - 16, all divided by 6
= 4 or -8/6, or 4 or -4/3.
The factors are (v-4) and (v + 4/3).
[tex]2n^2-11n+14=2n^2-4n-7n+14=2n(n-2)-7(n-2)\\\\=(n-2)(2n-7)=2(n-2)(n-3.5)[/tex]
[tex]3v^2-8v-16=3v^2-12v+4v-16=3v(v-4)+4(v-4)\\\\=(v-4)(3v+4)=3(v-4)\left(v+\dfrac{4}{3}\right)[/tex]
[tex]3v^2-8v-16=3v^2-12v+4v-16=3v(v-4)+4(v-4)\\\\=(v-4)(3v+4)=3(v-4)\left(v+\dfrac{4}{3}\right)[/tex]