Respuesta :

Answer: [tex]70a^2b^2c^3[/tex] will be the answer.

Explanation:

Since Given expression is [tex]10abc^2\sqrt{49a^2b^2c^2}[/tex]

We can write, [tex]10abc^2\sqrt{49a^2b^2c^2}= 10abc^2\sqrt{7^2a^2b^2c^2}[/tex]

[tex]\Rightarrow 10abc^2\sqrt{49a^2b^2c^2}= 10abc^2\sqrt{(7abc)^2}[/tex]

[tex]\Rightarrow 10abc^2\sqrt{49a^2b^2c^2}= 10abc^27abc[/tex]

[tex]\Rightarrow 10abc^2\sqrt{49a^2b^2c^2}= 10\times7abc^2abc[/tex]

[tex]\Rightarrow 10abc^2\sqrt{49a^2b^2c^2}= 70abc^2abc[/tex]

[tex]\Rightarrow 10abc^2\sqrt{49a^2b^2c^2}= 70a^2b^2c^3[/tex]

Answer:

B on edge

Step-by-step explanation: