Respuesta :

x^2 - 4x - 12
x - 6
x +2

If L equals to x + 2 than W will equal to x - 6

Answer:

The width is x-6.

Step-by-step explanation:

Givens:

  • Area of the rectangle [tex]x^2-4x-12[/tex] square meters.
  • The length is [tex]x+2[/tex]

We know that, the are of a rectangle is:

[tex]A=(length)(width)[/tex]

[tex]x^2-4x-12=(x+2)w[/tex]

[tex]\frac{x^2-4x-12}{x+2}=w[/tex]

Now, to solve this, we factorize the numerator.

[tex]x^2-4x-12=(x-a)(x+b)[/tex]

So, we need to find two number which product is 12 and difference is 4.

[tex]x^2-4x-12=(x-6)(x+2)[/tex]

Now, we replace this result in the fraction expression:

[tex]\frac{x^2-4x-12}{x+2}=w\\w=\frac{(x-6)(x+2)}{(x+2)}\\w=x-6[/tex]

Therefore, the width is x-6.