Respuesta :
Answer:
The width is x-6.
Step-by-step explanation:
Givens:
- Area of the rectangle [tex]x^2-4x-12[/tex] square meters.
- The length is [tex]x+2[/tex]
We know that, the are of a rectangle is:
[tex]A=(length)(width)[/tex]
[tex]x^2-4x-12=(x+2)w[/tex]
[tex]\frac{x^2-4x-12}{x+2}=w[/tex]
Now, to solve this, we factorize the numerator.
[tex]x^2-4x-12=(x-a)(x+b)[/tex]
So, we need to find two number which product is 12 and difference is 4.
[tex]x^2-4x-12=(x-6)(x+2)[/tex]
Now, we replace this result in the fraction expression:
[tex]\frac{x^2-4x-12}{x+2}=w\\w=\frac{(x-6)(x+2)}{(x+2)}\\w=x-6[/tex]
Therefore, the width is x-6.