For this case we have the following expression:
2 (^ 4 sqrt 16x) - 2 (^ 4sqrt2y) +3 (^ 4sqrt81x) -4 (^ 4sqrt 32y)
Rewriting we have:
2 (^ 4 sqrt 2 ^ 4x) - 2 (^ 4sqrt2y) +3 (^ 4sqrt3 ^ 4x) -4 (^ 4sqrt 2 ^ 4 * 2y)
Then by root properties we have:
2 * 2 (^ 4 sqrt x) - 2 (^ 4sqrt2y) + 3 * 3 (^ 4sqrt x) -4 * 2 (^ 4sqrt 2y)
Rewriting:
4 (^ 4 sqrt x) - 2 (^ 4sqrt2y) + 9 (^ 4sqrt x) - 8 (^ 4sqrt 2y)
Adding similar terms:
13 (^ 4 sqrt x) - 10 (^ 4sqrt2y)
Answer:
13 (^ 4 sqrt x) - 10 (^ 4sqrt2y)