Part a)
Best estimate for the population mean u:
The population is normally distributed. The best estimate for population mean would be the mean of the sample. So the best estimate for the population mean is 107 seconds.
Part b)
99% confidence interval:
We have the sample mean and population standard deviation so using the z distribution we can find the confidence interval.
The z value corresponding to 99% confidence interval is 2.576
The confidence interval can be found as:
[tex](u-z* \frac{s}{ \sqrt{n} } ,u+z* \frac{s}{ \sqrt{n} })[/tex]
Using the values in the above expression we get:
[tex](107-2.576* \frac{11.7}{ \sqrt{84} } ,107-2.576* \frac{11.7}{ \sqrt{84} }) \\ \\
=(103.71,110.29)[/tex]
This means the 99% confidence interval for the population mean is 103.71 to 110.29