The images of the resulting rectangle are [tex]A'(x,y) = (3,9)[/tex], [tex]B'(x,y) = (12,9)[/tex], [tex]C'(x,y) = (12,3)[/tex] and [tex]D'(x,y) = (3,3)[/tex], respectively. (Correct choice: A)
How to determine the resulting quadrillateral by rotation matrix
The resulting points are found by the following vectorial expression:
[tex]\left[\begin{array}{cccc}A'_{x}&B'_{x}&C'_{x}&D'_{x}\\A'_{y}&B'_{y}&C'_{y}&D'_{y}\end{array}\right] = \left[\begin{array}{ccc}3&0\\0&3\end{array}\right] \cdot \left[\begin{array}{cccc}A_{x}&B_{x}&C_{x}&D_{x}\\A_{y}&B_{y}&C_{y}&D_{y}\end{array}\right][/tex] (1)
If we know that [tex]A(x,y) = (1,3)[/tex], [tex]B(x,y) = (4,3)[/tex], [tex]C(x,y) = (4,1)[/tex] and [tex]D(x,y) = (1,1)[/tex], then the resulting points are:
[tex]\left[\begin{array}{cccc}A'_{x}&B'_{x}&C'_{x}& D'_{x}\\A'_{y}&B'_{y}&C'_{y}& D'_{y}\end{array}\right] = \left[\begin{array}{cc}3&0\\0&3\end{array}\right] \cdot \left[\begin{array}{cccc}1&4&4&1\\3&3&1&1\end{array}\right][/tex]
[tex]\left[\begin{array}{cccc}A'_{x}&B'_{x}&C'_{x}&D'_{x}\\A'_{y}&B'_{y}&C'_{y}&D'_{y}\end{array}\right] = \left[\begin{array}{cccc}3&12&12&3\\9&9&3&3\end{array}\right][/tex]
The images of the resulting rectangle are [tex]A'(x,y) = (3,9)[/tex], [tex]B'(x,y) = (12,9)[/tex], [tex]C'(x,y) = (12,3)[/tex] and [tex]D'(x,y) = (3,3)[/tex], respectively. (Correct choice: A) [tex]\blacksquare[/tex]
To learn more on rotation matrices, we kindly invite to check this verified question: https://brainly.com/question/15975423