Respuesta :

I suppose that the expression you wanted to write is [tex] \frac{3+n-2n^2}{1+n} [/tex]. If so, then we have:

[tex]\frac{3+n-2n^2}{1+n}= \frac{3+3n-2n-2n^2}{1+n} \\ \\ = \frac{3(1+n)-2n(1+n)}{1+n} = \frac{(3-2n)(1+n)}{1+n} \\ \\ =3-2n[/tex]

Answer:

Equivalent Polynomial of given polynomial is 3 - 2n.

Step-by-step explanation:

We are given following polynomial:

[tex]\frac{3+n-2n^2}{1+n}[/tex]

We have top find equivalent polynomial such that n ≠ -1

Consider,

[tex]\frac{3+n-2n^2}{1+n}[/tex]

[tex]=\frac{3+3n-2n-2n^2}{1+n}[/tex]

[tex]=\frac{3(1+n)-2n(1+n)}{1+n}[/tex]

[tex]=\frac{(1+n)(3-2n)}{1+n}[/tex]

[tex]=3-2n[/tex]

Therefore, Equivalent Polynomial of given polynomial is 3 - 2n.

ACCESS MORE