Respuesta :

Let
∅=arc tan x

we know that

∅ is an angle whose tangent function is

tan ∅=x/1

Considering the sides of the right triangle. 

We have 

opposite side =x,

adjacent side =1

and 

hypotenuse =√(x²+1)

Therefore 

the sine of this angle =opposite side/hypotenuse

sin ∅=x/√(x²+1)-----> the sign of sine ∅ will depend on the quadrant in which it is located

value of sin ∅ is positive--------->  ∅ belong to the first or second quadrant

value of sin ∅ is negative--------->  ∅ belong to the third or fourth quadrant


the answer is

x/√(x²+1)

The composed trigonometric function sin(arctan x) in terms of x is  [tex]y=\frac{x}{\sqrt{x^2+1} }[/tex].

Given function is:

[tex]y=sin(tan^{-1} x)[/tex]......(1)

What is an inverse trigonometric function?

It is the inverse function of trigonometric functions in a restricted domain.

Let us say,

[tex]tan^{-1} x =p[/tex].....(2)

So, equation 1 becomes,

y =sinp.....(3)

From equation 2,

[tex]x =tanp[/tex]

[tex]tanp =\frac{x}{1} \\[/tex]

x is the opposite side

1 is the adjacent side

So hypotenuse will be [tex]\sqrt{x^{2} +1}[/tex]

So, [tex]sinp =\frac{x}{\sqrt{x^2+1} }[/tex]

Therefore, the composed trigonometric function sin(arctan x) in terms of x is  [tex]y=\frac{x}{\sqrt{x^2+1} }[/tex].

To get more about inverse trigonometric functions visit:

https://brainly.com/question/1143565

ACCESS MORE