According to the synthetic division below which of the following statements are true?
![According to the synthetic division below which of the following statements are true class=](https://us-static.z-dn.net/files/ded/67de1b4658fc7d9d5be20f1d716965d7.jpg)
The correct options are [tex]\boxed{{\mathbf{Option A, C, and D}}}[/tex].
Further explanation:
In any synthetic division, the dividend polynomial [tex]F\left( x \right) = {a_n}{x^n} + {a_{n - 1}}{x^{n - 1}} + {a_{n - 2}}{x^{n - 2}} + \cdots {a_0}[/tex] and the divisor polynomial [tex]g\left( x \right) = x - b[/tex] can be written as,
[tex]\begin{aligned}b\left){\vphantom{1{\underline {\begin{array}{*{20}{c}}3&{ - 11}&{10} \\ {}&6&{ - 10}\end{array}} }}}\right.\!\!\!\!\overline{\,\,\,\vphantom 1{{\underline {\begin{array}{*{20}{c}}{a}_n&{ a}_{n-1}&_\cdot_\cdot_\cdot{a}_0\\{}&{ }\end{array}} }}}\hfill\\\begin{array}{*{20}{c}}{{\text{ }}&{c}_n}&_\cdot_\cdot_\cdot{ c}_0&{{\text{ }}&0}\end{array} \hfill\\\end{aligned}[/tex]
Here, the monic polynomial [tex]g\left( x \right) = x - b[/tex] is divided by the polynomial [tex]F\left( x \right) = {a_n}{x^n} + {a_{n - 1}}{x^{n - 1}} + {a_{n - 2}}{x^{n - 2}} + \cdots {a_0}[/tex] that provides the polynomial [tex]h\left( x \right) = {c_n}{x^n} + {c_{n - 1}}{x^{n - 1}} + {c_{n - 2}}{x^{n - 2}} + \cdots {c_0}[/tex] after division that is also a factor of the polynomial [tex]F\left( x \right) = {a_n}{x^n} + {a_{n - 1}}{x^{n - 1}} + {a_{n - 2}}{x^{n - 2}} + \cdots {a_0}[/tex].
Given:
The synthetic division is given below.
[tex]\begin{aligned}4\left){\vphantom{1{\underline {\begin{array}{*{20}{c}}3&{ - 11}&{10} \\ {}&6&{ - 10}\end{array}} }}}\right.\!\!\!\!\overline{\,\,\,\vphantom 1{{\underline {\begin{array}{*{20}{c}}3&{ - 11}&{10}\\{}&6&{ - 10}\end{array}} }}}\hfill\\\begin{array}{*{20}{c}}{{\text{ }}&3}&{ - 5}&{{\text{ }}&0}\end{array} \hfill\\\end{aligned}[/tex]
Step by step explanation:
We have to determine the answer among all the options.
Option A: [tex](x-2)[/tex] is a factor of [tex]3{x^2} - 11x + 10[/tex].
It can be observed from the given synthetic division the monic polynomial is [tex]g\left( x \right) = \left( {x - 2} \right)[/tex] that is divisible by the polynomial [tex]F\left( x \right) = 3{x^2} - 11x + 10[/tex].
Therefore, the polynomial [tex]g\left( x \right) = \left( {x - 2} \right)[/tex] is a factor of the polynomial [tex]F\left( x \right) = 3{x^2} - 11x + 10[/tex].
Therefore, the option A is correct option.
Option B: [tex]\left( {3{x^2} - 11x + 10} \right) \div \left( {x + 2} \right) = \left( {3x - 5} \right)[/tex]
The option B is not correct as [tex]g\left( x \right) = \left( {x + 2} \right)[/tex] is not a factor of the polynomial
[tex]F\left( x \right) = 3{x^2} - 11x + 10[/tex]
Option C: [tex]\left( {3{x^2} - 11x + 10} \right) \div \left( {x - 2} \right) = \left( {3x - 5} \right)[/tex]
It has been proved that the polynomial [tex]g\left( x \right) = \left( {x - 2} \right)[/tex] is a factor of the polynomial [tex]F\left( x \right) = 3{x^2} - 11x + 10[/tex].
Thus, the option C is correct option.
Option D: The number [tex]2[/tex] is a root of [tex]F\left( x \right) = 3{x^2} - 11x + 10[/tex].
From the option A it has been proved that [tex]g\left( x \right) = \left( {x - 2} \right)[/tex] is a factor of the polynomial [tex]F\left( x \right) = 3{x^2} - 11x + 10[/tex].
Now substitute 0 for [tex]g(x)[/tex] in the equation [tex]g\left( x \right) = \left( {x - 2} \right)[/tex] to find the root of the polynomial [tex]F\left( x \right) = 3{x^2} - 11x + 10[/tex] as,
[tex]\begin{aligned}0&= \left( {x - 2} \right) \hfill \\x &= 2\hfill\\\end{aligned}[/tex]
It can be seen that the value of [tex]x[/tex] is 2 it means [tex]2[/tex] is a root of the polynomial [tex]F\left( x \right) = 3{x^2} - 11x + 10[/tex].
Therefore, the option D is correct option.
Option E: The number [tex]-2[/tex] is a root of [tex]F\left( x \right) = 3{x^2} - 11x + 10[/tex].
It can be seen that the value of [tex]x[/tex] is 2 in option D it means [tex]-2[/tex] is not a root of the polynomial [tex]F\left( x \right) = 3{x^2} - 11x + 10[/tex].
Therefore, the option E is not correct option.
Option F: [tex](x+2)[/tex] is a factor of [tex]3{x^2} - 11x + 10[/tex].
The option F is not correct as [tex](x-2)[/tex] is not the factor of the polynomial [tex]F\left( x \right) = 3{x^2} - 11x + 10[/tex].
Result:
Therefore, the correct options are [tex]\boxed{{\mathbf{Option A, C, and D}}}[/tex].
Learn more:
Answer details:
Grade: Medium school
Subject: Mathematics
Chapter: Synthetic division
Keywords: Synthetic division, polynomial, monic polynomial, function, factor, real number, root , divisible, addition, remainder, quotient, divisor, dividend.