which shows the correct substitution of the values a, b, and c from the equation -2=-x+x^2-4 into the quadratic formula?

Quadratic formula: x= -b+_ square root b^2-4ac / 2a

Respuesta :

Given the equation:

(1) [tex]-2=-x+ x^{2}-4[/tex]

We need to find a, b and c. So, we know that a quadratic equation is given by:

(2) [tex]ax^{2}+bx+c=0[/tex]

Then, we need to order the equation (1) and to adjust it to the equation (2), so:

[tex]x^{2}-x-2=0[/tex]

So, if we compare these two equations, the conclusion is:

[tex]a=1[/tex]
[tex]b=-1[/tex]
[tex]c=-2[/tex]

(3) [tex]x= \frac{-b\pm \sqrt{b^{2}-4ac}}{2a}[/tex]

Substituiting a, b and c into (3):

[tex]x= \frac{-(-1)\pm \sqrt{(-1)^{2}-4(1)(-2)}}{2(1)}[/tex]

Finally, the results are two values:

[tex]x_{1}=2[/tex]
[tex]x_{2}=-1[/tex]

The correct substitution of a, b and c in the quadratic formula is as follows:

[tex]\frac{-(-1) +\sqrt{(-1)^{2}-4(1)(-2) } }{2(1)}[/tex]

Quadratic equation

The quadratic equation follows the pattern,

  • ax² + bx + c

The given equation have to b arrange in the format above to know the value of a, b and c.

Therefore,

-2 = -x + x²- 4

x² - x - 4 +2 = 0

x² - x - 2

Therefore,

a = 1

b = -1

c = -2

Using the quadratic formula

[tex]\frac{-b +\sqrt{b^{2}-4ac } }{2a}[/tex]

The correct substitution is as follows

[tex]\frac{-(-1) +\sqrt{(-1)^{2}-4(1)(-2) } }{2(1)}[/tex]

learn more on quadratic equation here: https://brainly.com/question/9634215