Respuesta :
(a)
[tex]\displaystyle \frac{1}{2} \cdot \int_{\frac{\pi}{3}}^{\frac{5\pi}{3}} \left(4^2 - (3 + 2\cos\theta)^2 \right) \, d\theta[/tex]
or, via symmetry
[tex]\displaystyle\frac{1}{2} \cdot 2 \int_{\frac{\pi}{3}}^{\pi} \left(4^2 - (3 + 2\cos\theta)^2 \right) \, d\theta[/tex]
____________
(b)
By the chain rule:
[tex]\displaystyle \frac{dy}{dx} = \frac{ dy/ d\theta}{ dx/ d\theta}[/tex]
For polar coordinates, x = rcosθ and y = rsinθ. Since
r = 3 + 2cosθ, it follows that
[tex]x = (3 + 2\cos\theta) \cos \theta \\ y = (3 + 2\cos\theta) \sin \theta[/tex]
Differentiating with respect to theta
[tex]\begin{aligned} \displaystyle \frac{dy}{dx} &= \frac{ dy/ d\theta}{ dx/ d\theta} \\ &= \frac{(3 + 2\cos\theta)(\cos\theta) + (-2\sin\theta)(\sin\theta)}{(3 + 2\cos\theta)(-\sin\theta) + (-2\sin\theta)(\cos\theta)} \\ \\ \left.\frac{dy}{dx}\right_{\theta = \frac{\pi}{2}} &= 2/3 \end{aligned}[/tex]
2/3 is the slope
____________
(c)
"distance between the particle and the origin increases at a constant rate of 3 units per second" implies dr/dt = 3
Angle θ and r are related via r = 3 + 2cosθ, so implicitly differentiating with respect to time
[tex]\displaystyle\frac{dr}{dt} = -2\sin\theta \frac{d\theta}{dt} \quad \stackrel{\theta = \pi/3}{\implies} \quad 3 = -2\left( \frac{\sqrt{3}}{2}}\right) \frac{d\theta}{dt} \implies \\ \\ \frac{d\theta}{dt} = -\sqrt{3} \text{ radians per second} [/tex]
[tex]\displaystyle \frac{1}{2} \cdot \int_{\frac{\pi}{3}}^{\frac{5\pi}{3}} \left(4^2 - (3 + 2\cos\theta)^2 \right) \, d\theta[/tex]
or, via symmetry
[tex]\displaystyle\frac{1}{2} \cdot 2 \int_{\frac{\pi}{3}}^{\pi} \left(4^2 - (3 + 2\cos\theta)^2 \right) \, d\theta[/tex]
____________
(b)
By the chain rule:
[tex]\displaystyle \frac{dy}{dx} = \frac{ dy/ d\theta}{ dx/ d\theta}[/tex]
For polar coordinates, x = rcosθ and y = rsinθ. Since
r = 3 + 2cosθ, it follows that
[tex]x = (3 + 2\cos\theta) \cos \theta \\ y = (3 + 2\cos\theta) \sin \theta[/tex]
Differentiating with respect to theta
[tex]\begin{aligned} \displaystyle \frac{dy}{dx} &= \frac{ dy/ d\theta}{ dx/ d\theta} \\ &= \frac{(3 + 2\cos\theta)(\cos\theta) + (-2\sin\theta)(\sin\theta)}{(3 + 2\cos\theta)(-\sin\theta) + (-2\sin\theta)(\cos\theta)} \\ \\ \left.\frac{dy}{dx}\right_{\theta = \frac{\pi}{2}} &= 2/3 \end{aligned}[/tex]
2/3 is the slope
____________
(c)
"distance between the particle and the origin increases at a constant rate of 3 units per second" implies dr/dt = 3
Angle θ and r are related via r = 3 + 2cosθ, so implicitly differentiating with respect to time
[tex]\displaystyle\frac{dr}{dt} = -2\sin\theta \frac{d\theta}{dt} \quad \stackrel{\theta = \pi/3}{\implies} \quad 3 = -2\left( \frac{\sqrt{3}}{2}}\right) \frac{d\theta}{dt} \implies \\ \\ \frac{d\theta}{dt} = -\sqrt{3} \text{ radians per second} [/tex]
a) The expression involving an integral for the area of R is [tex]A = \int\limits_{\frac{\pi}{3} }^{\frac{5\pi}{3}} \int\limits_{3 + 2\cdot \cos \theta}^{4} r\,dr\,d\theta[/tex].
b) The slope of the line tangent to the graph of [tex]r = 3 + 2\cdot \cos \theta[/tex] is [tex]\frac{2}{3}[/tex].
c) The rate of change of the angle is [tex]-\sqrt{3}[/tex] radians per second.
Procedure - Integrals and derivatives in polar coordinates
a) Area of the shaded region as a double integral
Given two curves in polar coordinates with the same reference framework, the area between these curves is represented by the following definite double integral:
[tex]A =\int\limits_{\theta_{1}}^{\theta_{2}} \int\limits_{f(\theta)}^{g(\theta)} \,r\,dr\,d\theta[/tex] (1)
Where:
- [tex]f(\theta)[/tex] - "Lower" function
- [tex]g(\theta)[/tex] - "Upper" function
- [tex]\theta_{1}[/tex] - Lower bound, in radians.
- [tex]\theta_{2}[/tex] - Upper bound, in radians.
Determination of the double integral formula
If we know that [tex]f(\theta) = 3 + 2\cdot \cos \theta[/tex], [tex]g(\theta) = 4[/tex], [tex]\theta_{1} = \frac{\pi}{3}[/tex] and [tex]\theta_{2} = \frac{5\pi}{3}[/tex], then the integral equation for the shaded region is:
[tex]A = \int\limits_{\frac{\pi}{3} }^{\frac{5\pi}{3}} \int\limits_{3 + 2\cdot \cos \theta}^{4} r\,dr\,d\theta[/tex] (2)
The expression involving an integral for the area of R is [tex]A = \int\limits_{\frac{\pi}{3} }^{\frac{5\pi}{3}} \int\limits_{3 + 2\cdot \cos \theta}^{4} r\,dr\,d\theta[/tex]. [tex]\blacksquare[/tex]
b) Determination of the slope of a tangent line
The slope of a line tangent to a curve, expressed in rectangular coordinates, is represented by the following expression:
[tex]\frac{dy}{dx} = \frac{r(\theta) \cdot \cos \theta + \frac{dr}{d\theta}\cdot \sin \theta }{-r(\theta)\cdot \sin \theta + \frac{dr}{d\theta}\cdot \cos \theta }[/tex] (3)
Where [tex]\theta[/tex] is expressed in radians.
If we know that [tex]\theta = \frac{\pi}{2}[/tex], [tex]r = 3 + 2\cdot \cos \theta[/tex] and [tex]\frac{dr}{d\theta} = -2\cdot \sin \theta[/tex], then the slope of the line tangent to the graph is:
[tex]\cos \frac{\pi}{2} = 0[/tex], [tex]\sin \frac{\pi}{2} = 1[/tex]
[tex]r\left(\frac{\pi}{2} \right) = 3 + 2\cdot \cos \frac{\pi}{2}[/tex]
[tex]r = 3[/tex]
[tex]\frac{dr}{d\theta} = -2\cdot \sin \frac{\pi}{2}[/tex]
[tex]\frac{dr}{d\theta} = -2[/tex]
[tex]\frac{dy}{dx} = \frac{3\cdot (0)-2\cdot (1)}{-3\cdot (1) -2\cdot (0)}[/tex]
[tex]\frac{dy}{dx} = \frac{2}{3}[/tex]
The slope of the line tangent to the graph of [tex]r = 3 + 2\cdot \cos \theta[/tex] is [tex]\frac{2}{3}[/tex]. [tex]\blacksquare[/tex]
c) Rate of change of a function in polar coordinates
Mathematically speaking, the rate of change of a variable is the instantaneous change of this variable in time.
If we know that [tex]r = 3 + 2\cdot \cos \theta[/tex], [tex]\theta = \frac{\pi}{3}[/tex] and [tex]\frac{dr}{dt} = 3[/tex], then the rate of change experimented by the angle is:
[tex]\frac{dr}{dt} = -2\cdot \sin \theta \cdot \frac{d\theta}{dt}[/tex]
[tex]\frac{d\theta\heta}{dt} = -\left(\frac{1}{2\cdot \sin \theta}\right)\cdot \frac{dr}{dt}[/tex] (3)
Where [tex]\frac{d\theta}{dt}[/tex] is the rate of change of the angle, measured in radians per second.
[tex]\frac{d\theta}{dt} = -\left(\frac{1}{2\cdot \sin \frac{\pi}{3} } \right)\cdot (3)[/tex]
[tex]\frac{d\theta}{dt} = -\sqrt{3}\,\frac{rad}{s}[/tex]
The rate of change of the angle is [tex]-\sqrt{3}[/tex] radians per second. [tex]\blacksquare[/tex]
To learn more on double integrals, we kindly invite to check this verified question: https://brainly.com/question/20038346