Respuesta :
[tex]\bf slope = m = \cfrac{rise}{run} \implies
\cfrac{ f(x_2) - f(x_1)}{ x_2 - x_1}\impliedby
\begin{array}{llll}
average~rate\\
of~change
\end{array}\\\\
-------------------------------\\\\
f(x)= -16t^2+34t+546 \qquad
\begin{cases}
x_1=5\\
x_2=7
\end{cases}\implies \cfrac{f(7)-f(5)}{7-5}
\\\\\\
\cfrac{[-16(7)^2+34(7)+546]~~-~~[-16(5)^2+34(5)+546]}{2}
\\\\\\
\cfrac{[0]~~-~~[316]}{2}\implies \cfrac{-316}{2}\implies \cfrac{-158}{1}\implies -158[/tex]
Answer:
-158
Step-by-step explanation:
First we evaluate the function for t = 5 and t = 7:
f(5) = -16(5²)+34(5)+546
= -16(25)+170+546
= -400+170+546 = 316
f(7) = -16(7²)+34(7)+546
= -16(49)+238+546
= 0
The average rate of change is found using the formula
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Using our two values of the function as y and the times, t, as x, we have:
y = (0-316)/(7-5) = -316/2 = -158