[tex] \frac{12 {a}^{2} {b}^{6} {c}^{5} }{20 {a}^{2} {b}^{8} {c}^{2} } [/tex]
To begin, we can simplify the coefficients of the numerator and denominator:
[tex] \frac{12 {a}^{2} {b}^{6} {c}^{5} }{20 {a}^{2} {b}^{8} {c}^{2} } = \\ \\ \frac{3 {a}^{2} {b}^{6} {c}^{5} }{5 {a}^{2} {b}^{8} {c}^{2} } [/tex]
Next, the a² in both the numerator and denominator will cancel:
[tex]\frac{3 {a}^{2} {b}^{6} {c}^{5} }{5 {a}^{2} {b}^{8} {c}^{2} } = \\ \\ \frac{3 {b}^{6} {c}^{5} }{5 {b}^{8} {c}^{2} } [/tex]
After that, we can simplify the b and c in the numerator and denominator. Keep in mind that dividing numbers with exponents (that have the same base) is the same as subtraction. For example, [tex]\frac{{b}^{6} }{ {b}^{8}} }= b^{6-8} = b^{-2}= \frac{1}{b^2} [/tex].
[tex]\frac{3 {b}^{6} {c}^{5} }{5 {b}^{8} {c}^{2} } = \\ \\ \frac{3 {c}^{5} }{5 {b}^{2} {c}^{2} } = \\ \\ \frac{3 {c}^{3} }{5 {b}^{2} }[/tex]
[tex] \frac{12 {a}^{2} {b}^{6} {c}^{5} }{20 {a}^{2} {b}^{8} {c}^{2} } [/tex] simplifies to [tex]\frac{3 {c}^{3} }{5 {b}^{2} }[/tex].