Respuesta :
in short, to convert two fractions to have the same denominator, we simply multiply one by the denominator of the other, so in this case, we'll multiply 1/3 by 5, top and bottom, and 1/5 by 3, top and bottom, thus
[tex]\bf a^{\frac{ n}{ m}} \implies \sqrt[ m]{a^ n} \qquad \qquad \sqrt[ m]{a^ n}\implies a^{\frac{ n}{ m}}\\\\ -------------------------------[/tex]
[tex]\bf \cfrac{15x^{\frac{1}{3}}}{y^{\frac{1}{5}}}\qquad \begin{cases} \frac{1}{3}=\frac{1\cdot 5}{3\cdot 5}\\ \qquad \frac{5}{15}\\\\ \frac{1}{5}=\frac{1\cdot 3}{5\cdot 3}\\ \qquad \frac{3}{15} \end{cases}\implies \cfrac{15x^{\frac{5}{15}}}{y^{\frac{3}{15}}}\implies 15\cdot \cfrac{x^{\frac{5}{15}}}{y^{\frac{3}{15}}}\implies 15\cdot \cfrac{\sqrt[15]{x^5}}{\sqrt[15]{y^3}} \\\\\\ 15\sqrt[15]{\frac{x^5}{y^3}}[/tex]
[tex]\bf a^{\frac{ n}{ m}} \implies \sqrt[ m]{a^ n} \qquad \qquad \sqrt[ m]{a^ n}\implies a^{\frac{ n}{ m}}\\\\ -------------------------------[/tex]
[tex]\bf \cfrac{15x^{\frac{1}{3}}}{y^{\frac{1}{5}}}\qquad \begin{cases} \frac{1}{3}=\frac{1\cdot 5}{3\cdot 5}\\ \qquad \frac{5}{15}\\\\ \frac{1}{5}=\frac{1\cdot 3}{5\cdot 3}\\ \qquad \frac{3}{15} \end{cases}\implies \cfrac{15x^{\frac{5}{15}}}{y^{\frac{3}{15}}}\implies 15\cdot \cfrac{x^{\frac{5}{15}}}{y^{\frac{3}{15}}}\implies 15\cdot \cfrac{\sqrt[15]{x^5}}{\sqrt[15]{y^3}} \\\\\\ 15\sqrt[15]{\frac{x^5}{y^3}}[/tex]
Answer:
[tex]15\cdot\sqrt[3]{x}\cdot \sqrt[5]{y}[/tex]
Step-by-step explanation:
We have been given an expression [tex]15x^{\frac{1}{3}}y^{\frac{1}{5}[/tex]. We are asked to express our given expression using a radical.
Using fractional exponent rule [tex]a^{\frac{m}{n}}=\sqrt[n]{a^m}[/tex], we can write terms of our given expression as:
[tex]15\cdot\sqrt[3]{x^1}\cdot \sqrt[5]{y^1}[/tex]
[tex]15\cdot\sqrt[3]{x}\cdot \sqrt[5]{y}[/tex]
Therefore, our required expression would be [tex]15\cdot\sqrt[3]{x}\cdot \sqrt[5]{y}[/tex].