Respuesta :
1)
[tex]y = \sin(2x) \\ y = \sin(2( \frac{\pi}{4} ) ) \\ y = \sin( \frac{\pi}{2} ) \\ y = 1[/tex]
D is the answer for 1
2)
[tex]y = 2\sin( \frac{x}{2} ) [/tex]
3) Picture*** ( Sorry I'm on the bus).
4) Choice C.
[tex]y = \sin(2x) \\ y = \sin(2( \frac{\pi}{4} ) ) \\ y = \sin( \frac{\pi}{2} ) \\ y = 1[/tex]
D is the answer for 1
2)
[tex]y = 2\sin( \frac{x}{2} ) [/tex]
3) Picture*** ( Sorry I'm on the bus).
4) Choice C.

Answer:
Step-by-step explanation:
Ans 1.)
The graph of [tex]y=sin2x[/tex] in fig-1
When put [tex]x=\frac{pi}{4}[/tex] in [tex]y=sin2x[/tex] so, we get
[tex]y=sin2(\frac{pi}{4})[/tex]
[tex]y=sin(\frac{pi}{2})[/tex]
We can see the value of [tex]y=sin(\frac{pi}{2})[/tex] in figure-1,
the value of [tex]y=sin(\frac{pi}{2})[/tex] is 0.
Hence the correct option is (B).
Ans 2.)
The general equation is [tex]y=Asin(B(x+C))+D[/tex]
Where Amplitude=A,
[tex]\text{period}=\frac{2\pi}{B}[/tex]
Phase shift =C
and Vertical shift=D
So, if Amplitude is 2 then A=2 and period is 4pi radian then [tex]\frac{2pi}{4pi}[/tex],
We get equation as;
[tex]y=2sin(\frac{x}{2})[/tex]
Hence correct option is (D).
Ans 3.)
one cycle of cosine function is shown in figure-2
Ans 4.)
The general equation is [tex]y=Acos(B(x+C))+D[/tex]
Where Amplitude=A,
[tex]\text{period}=\frac{2\pi}{B}[/tex]
Phase shift =C,
Vertical shift=D and range is [tex]-A\leq y\leq A[/tex].
In cosine function, [tex]y=-3cos4x[/tex];
Period is [tex]\text{B}=\frac{1}{2pi}[/tex], Range is [tex]-3\leq y\leq 3[/tex] and Amplitude is 3.
Hence, the correct option is (C).

