Respuesta :

So we have the formula for the area of a sector of a circle: [tex]A= \pi r^2( \frac{s}{360} )[/tex]
where
[tex]A[/tex] is the area of the sector
[tex]s[/tex] is the central angle

To solve for 
[tex]s[/tex], we are going to divide both sides of the equation by [tex] \pi r^2[/tex], and then we are going to multiply both sides of the equation by 360°:
[tex]A= \pi r^2( \frac{s}{360} )[/tex] 
[tex] \frac{A}{\pi r^2} = \frac{ \pi r^2( \frac{s}{360} )}{\pi r^2} [/tex]
[tex] \frac{s}{360}= \frac{A}{\pi r^2} [/tex]
[tex]\frac{s}{360}(360)= \frac{A}{\pi r^2} (360)[/tex]
[tex]s= \frac{360A}{\pi r^2} [/tex]

We can conclude that the solution for s is: [tex]s= \frac{360A}{\pi r^2} [/tex]
ACCESS MORE