Respuesta :

ANSWER


[tex]4(5 \sqrt{ {x}^{2}y } ) + 3(5 \sqrt{ {x}^{2} y} ) = 35x\sqrt{y}[/tex]


EXPLANATION

The given expression is
[tex]4(5 \sqrt{ {x}^{2}y } ) + 3(5 \sqrt{ {x}^{2} y} )[/tex]


We need to simplify the above expression first before, we add them.


Let us deal with the expressions within the parenthesis first,

[tex]4(5 \sqrt{ {x}^{2}y } ) + 3(5 \sqrt{ {x}^{2} y} ) = 4(5 \sqrt{ {x}^{2}}\times \sqrt{y} ) + 3(5 \sqrt{ {x}^{2} } \times \sqrt{y} )[/tex]


This will simplify to,

[tex]4(5 \sqrt{ {x}^{2}y } ) + 3(5 \sqrt{ {x}^{2} y} ) = 4(5 x\times \sqrt{y} ) + 3(5 x \times \sqrt{y} )[/tex]


We now multiply out the brackets to obtain,

[tex]4(5 \sqrt{ {x}^{2}y } ) + 3(5 \sqrt{ {x}^{2} y} ) = 20 x\times \sqrt{y} + 15 x \times \sqrt{y} )[/tex]


This implies that,

[tex]4(5 \sqrt{ {x}^{2}y } ) + 3(5 \sqrt{ {x}^{2} y} ) = 20 x\sqrt{y} + 15 x \sqrt{y} )[/tex]


This will give us,

[tex]4(5 \sqrt{ {x}^{2}y } ) + 3(5 \sqrt{ {x}^{2} y} ) = 35x\sqrt{y}[/tex]

Answer:

7(5 sqrt x^2y) or C

Step-by-step explanation:

ACCESS MORE