Use the unit circle to find the value of each trigonometric function at the angle indicated
![Use the unit circle to find the value of each trigonometric function at the angle indicated class=](https://us-static.z-dn.net/files/df4/2eff6ef262d5d4b9ded97f3ccb5e27da.png)
Answer:
Step-by-step explanation:
We have to find the values of the given trigonometric ratios at the angle indicated. Thus,
(A) The given trigonometric function is:
[tex]cos270^{\circ}[/tex]
Since, the function lies in Quadrant III, therefore the value of the function will be negative.
Also, [tex]cos270^{\circ}=-(0)=0[/tex]
(B) The given trigonometric function is:
[tex]sin270^{\circ}[/tex]
Since, the function lies in Quadrant III, therefore the value of the function will be negative.
Also, [tex]sin270^{\circ}=-1[/tex]
(C) The given trigonometric function is:
[tex]tan270^{\circ}[/tex]
Since, the function lies in Quadrant III, therefore the value of the function will be negative.
Also, [tex]tan270^{\circ}=undefined[/tex]
(D) The given function is:
[tex]cos0^{\circ}[/tex]
Since, the function lies in Quadrant I, therefore the value of the function will be positive.
Also, [tex]cos0^{\circ}=1[/tex]
(E) The given function is:
[tex]sin0^{\circ}[/tex]
Since, the function lies in Quadrant I, therefore the value of the function will be positive.
Also, [tex]sin0^{\circ}=0[/tex]
(F) The given function is:
[tex]tan0^{\circ}[/tex]
Since, the function lies in Quadrant I, therefore the value of the function will be positive.
Also, [tex]tan0^{\circ}=0[/tex]