Respuesta :
we know that
the volume of a solid oblique pyramid is equal to
[tex]V=\frac{1}{3}*B*h[/tex]
where
B is the area of the base
h is the height of the pyramid
in this problem we have that
B is a square
[tex]B=b^{2}[/tex]
where
[tex]b=x\ cm[/tex]
so
[tex]B=x^{2}\ cm^{2}[/tex]
[tex]h=(x+2)\ cm[/tex]
substitute in the formula of volume
[tex]V=\frac{1}{3}*x^{2}*(x+2)\\ \\V=\frac{1}{3}*[x^{3} +2x^{2}]\ cm^{3}[/tex]
therefore
the answer is
[tex]V=\frac{1}{3}*[x^{3} +2x^{2}]\ cm^{3}[/tex]