A rectangular tank that is 8788 ft cubed with a square base and open top is to be constructed of sheet steel of a given thickness. find the dimensions of the tank with minimum weight.

Respuesta :

Form minimum weight, the surface area must be minimum.
Let the height be h and the lengths be x
the volume will be:
8788=hx^2
hence
h=8788/x^2
A=x^2+4xh
A=x^2+35142/x
dA/dx=2x-35152/x^2
thus
when dA/dx=0
2x-35152/x^2=0
2x=35152/x^2
hence
2x^3=35152
x^3=17576
x=26 ft
hence
h=8788/x^2=8788/26^2=13 ft
Hence the dimensions are 26 ft by 26 ft by 13 ft

The dimensions of the rectangular tank are [tex]26\;\rm{ft}\times26\;\rm{ft}\times13\;\rm{ft}[/tex].

Step-by-step explanation:

Given: A rectangular tank that is [tex]8788\;\rm{ft^3[/tex] with a square base and open top is to be constructed of sheet steel of a given thickness.

According to question:

For the value of minimum weight, the surface area sholud be minimum.

Let the height be [tex]h[/tex] and the length of the tank be [tex]x[/tex].

So, the volume of tank will be formulated as: [tex]V=lbh[/tex]

[tex]hx^2=8788[/tex]

[tex]h=\frac{8788}{x^2}[/tex]

Now,

[tex]A=x^2+4xh\\A=x^2+\frac{35142}{x}[/tex]

Differentiating the area w.r.t [tex]x[/tex] we get:  

[tex]\frac{dA}{dx}=2x-35152/x^2[/tex]

For surface area to be minimum then  

[tex]2x-35152/x^2=0[/tex]

[tex]2x=35152/x^2[/tex]

 

[tex]h=\frac{8788}{26^2} =\frac{8788}{676}=13\;\rm{ft}[/tex]

Hence, the dimensions of tank are [tex]26\;\rm{ft}\times26\;\rm{ft}\times13\;\rm{ft}[/tex].

Learn more about volume of a solid here:

https://brainly.com/question/25078125?referrer=searchResults

ACCESS MORE