Respuesta :
Form minimum weight, the surface area must be minimum.
Let the height be h and the lengths be x
the volume will be:
8788=hx^2
hence
h=8788/x^2
A=x^2+4xh
A=x^2+35142/x
dA/dx=2x-35152/x^2
thus
when dA/dx=0
2x-35152/x^2=0
2x=35152/x^2
hence
2x^3=35152
x^3=17576
x=26 ft
hence
h=8788/x^2=8788/26^2=13 ft
Hence the dimensions are 26 ft by 26 ft by 13 ft
Let the height be h and the lengths be x
the volume will be:
8788=hx^2
hence
h=8788/x^2
A=x^2+4xh
A=x^2+35142/x
dA/dx=2x-35152/x^2
thus
when dA/dx=0
2x-35152/x^2=0
2x=35152/x^2
hence
2x^3=35152
x^3=17576
x=26 ft
hence
h=8788/x^2=8788/26^2=13 ft
Hence the dimensions are 26 ft by 26 ft by 13 ft
The dimensions of the rectangular tank are [tex]26\;\rm{ft}\times26\;\rm{ft}\times13\;\rm{ft}[/tex].
Step-by-step explanation:
Given: A rectangular tank that is [tex]8788\;\rm{ft^3[/tex] with a square base and open top is to be constructed of sheet steel of a given thickness.
According to question:
For the value of minimum weight, the surface area sholud be minimum.
Let the height be [tex]h[/tex] and the length of the tank be [tex]x[/tex].
So, the volume of tank will be formulated as: [tex]V=lbh[/tex]
[tex]hx^2=8788[/tex]
[tex]h=\frac{8788}{x^2}[/tex]
Now,
[tex]A=x^2+4xh\\A=x^2+\frac{35142}{x}[/tex]
Differentiating the area w.r.t [tex]x[/tex] we get:
[tex]\frac{dA}{dx}=2x-35152/x^2[/tex]
For surface area to be minimum then
[tex]2x-35152/x^2=0[/tex]
[tex]2x=35152/x^2[/tex]
[tex]h=\frac{8788}{26^2} =\frac{8788}{676}=13\;\rm{ft}[/tex]
Hence, the dimensions of tank are [tex]26\;\rm{ft}\times26\;\rm{ft}\times13\;\rm{ft}[/tex].
Learn more about volume of a solid here:
https://brainly.com/question/25078125?referrer=searchResults